Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Anal Chem ; 93(27): 9541-9548, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1284670

ABSTRACT

Quantitative diagnostics that are rapid, inexpensive, sensitive, robust, and field-deployable are needed to contain the spread of infectious diseases and inform treatment strategies. While current gold-standard techniques are highly sensitive and quantitative, they are slow and require expensive equipment. Conversely, current rapid field-deployable assays available provide essentially binary information about the presence of the target analyte, not a quantitative measure of concentration. Here, we report the development of a molecular diagnostic test [quantitative recombinase polymerase amplification (qRPA)] that utilizes competitive amplification during a recombinase polymerase amplification (RPA) assay to provide semi-quantitative information on a target nucleic acid. We demonstrate that qRPA can quantify DNA, RNA, and viral titers in HIV and COVID-19 patient samples and that it is more robust to environmental perturbations than traditional RPA. These features make qRPA potentially useful for at-home testing to monitor the progress of viral infections or other diseases.


Subject(s)
COVID-19 , Nucleic Acid Amplification Techniques , Humans , Molecular Diagnostic Techniques , Recombinases , SARS-CoV-2 , Sensitivity and Specificity
2.
Nat Commun ; 11(1): 5920, 2020 11 20.
Article in English | MEDLINE | ID: covidwho-939437

ABSTRACT

Rapid, inexpensive, robust diagnostics are essential to control the spread of infectious diseases. Current state of the art diagnostics are highly sensitive and specific, but slow, and require expensive equipment. Here we report the development of a molecular diagnostic test for SARS-CoV-2 based on an enhanced recombinase polymerase amplification (eRPA) reaction. eRPA has a detection limit on patient samples down to 5 viral copies, requires minimal instrumentation, and is highly scalable and inexpensive. eRPA does not cross-react with other common coronaviruses, does not require RNA purification, and takes ~45 min from sample collection to results. eRPA represents a first step toward at-home SARS-CoV-2 detection and can be adapted to future viruses within days of genomic sequence availability.


Subject(s)
Betacoronavirus/genetics , Betacoronavirus/isolation & purification , Nucleic Acid Amplification Techniques/methods , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Humans , RNA/metabolism , RNA, Viral/genetics , RNA, Viral/isolation & purification , RNA-Directed DNA Polymerase/metabolism , Real-Time Polymerase Chain Reaction , Recombinases/metabolism , SARS-CoV-2 , Saliva/virology , Virion/genetics
SELECTION OF CITATIONS
SEARCH DETAIL